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Abstract— This paper introduces the experimental study on the
magnetic field of a permanent magnet (PM) spherical actuator. A
new type of testbed is developed to measure the three-dimensional
(3D) magnetic flux density distribution of the rotor consisting of
PM poles. The captured data are nondimensionlized and normal-
ized so that they could be referred by similar rotor designs without
regard to the specific dimensions of the poles. Furthermore, the
measured data are presented visually in Cartesian coordinates,
which facilitates the analysis of the magnetic field generated by
the rotor.

I. INTRODUCTION

The experimental investigation of the magnetic field is one
of critical topics for developing electromagnetic products. It
provides a powerful tool to understand the distribution of a
magnetic field which is an indispensable element to create
the force/torque of these actuators. It can be used to verify
the analytical or numerical result of a magnetic field as well
as benefit the design optimization of products.

Experimental measurement on the magnetic flux density can
be done readily in some special cases. For example, for
the 1D magnetic field of electromagnets having rectangular
cross-section [1] [2], the fringing flux could be ignored and
the flux lines can be regarded as evenly distributed within the
airgap volume. In this case, the flux density data can be taken
easily at arbitrary points in the airgap by using the single-
axis hall probe. Unfortunately, the rigorous requirement on
the airgap in the magnetic flux loop limits the application
of this measurement method. Furlani [3] simplified the flux
density measurement of a PM axial-field motor by sampling
the data in a characteristic point within the workspace.
However, the data at this point can only reflect the variation
of the magnetic field roughly. Enokizono et al. [4] have
proposed a method to measure the flux density on a 2D
plane of a single-axis motor accurately. Due to the axially
symmetric structure of this motor, the magnetic field on one
plane perpendicular to the axis suffices to indicate the entire
magnetic field. In recent years, three-degree-of-freedom (3-
DOF) electromagnetic spherical motors [5]–[10] have been
developed by researchers to overcome the drawbacks of con-
ventional spherical motion mechanisms realized by several

single-axis motors connected in series or parallel. Analysis
on the magnetic field of these spherical motors has been
done through different means. However, so far no report has
been found on the experimental work of the flux density
distribution for these motors. Only FEM approach was used
to simulate the variation of the flux density (radial component
Br) with respect to the spherical coordinate, φ or θ [10]
[11]. One of the difficulties of making experiments on these
3-DOF spherical actuators might be that it is challenging to
conduct the measurement of the three components of the flux
density which varies in a 3D space. In this study, a testbed
for the flux density measurement in a 3D space has been
developed and the data have been taken within the workspace
of the spherical actuator. Furthermore, the experimental
result is presented visually for the easy comprehension of the
magnetic field. It is worth pointing out that these data can
be used to compare with the computational result from the
magnetic field model as well as act as a nondimensionlized
database which can be referred by other researchers.

In following sections, the working principle and the magnetic
field model of the spherical actuator are reviewed. Subse-
quently, by using the prototype developed according to the
working principle, the 3D magnetic field measurement is
carried out on a testbed. Next, based on the magnetic field
model, the data captured in the experiment are processed by
nondimensionalization and normalization. At last, the exper-
imental result is presented visually in a Cartesian coordinate
system. And with the aid of visualization, the magnetic is
analyzed.

II. MAGNETIC FIELD MODEL OF THE
SPHERICAL ACTUATOR

A. Working Principle

In our previous study [12] [13], a spherical actuator that
consists of a ball-shaped rotor with a full circle of PM
poles and a spherical-shell-like stator with two layers of
circumferential air-core coils has been proposed. The PMs
of rare earth materials can generate high flux density within
the actuator, and the air-core coils may simplify the torque
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Fig. 1. 3-DOF motion of spherical actuator

model of the spherical actuator in a linear fashion. The basic
working principle of the actuator is illustrated in Fig. 1. With
pairs of coils in two longitudinal directions activated, the
rotor creates tilting motions in two orthogonal directions as
shown in Fig. 1(a) and (b). By energizing the rest of the
circumferential coils, the rotor can spin about its own axis.
Therefore, through varying the input currents of the coils,
any desirable 3-DOF spherical motion can be generated.

B. Magnetic Field Model

Figure 2(a) illustrates the alternately magnetized PM poles
along the equator of the rotor. Note that air slots exist among
PM poles, which generalizes the study of poles pattern.
Figure 2(b) shows the structure of a single PM pole clearly,
i.e. the approximate dihedral cone enclosed by ABCD and
abcd. The dihedral cone can be defined by four parameters:
α, β, Rb and Rr. On account of the material properties,
the space being analyzed is divided into three regions. The
air space outside the rotor is defined as Region I . The
volume enclosed by ABCD and abcd is defined as Region
II . Region III is the space enveloped by abcdO where
the material of soft-iron is filled in. Note that only the
radial component of the flux density in Region I is able to
generate a torque with respect to the rotor center. Attention
is restricted on it. By using the Laplace’s equation and the
boundary conditions among these three regions, this radial
component is formulated as [14]

BIr=
12µ0M0cd4

8π

√
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where µ0 is the permeability of free space which has the
value of 4π × 10−7H/m; θ, φ and r form the spherical
coordinates affixed on the rotor frame as shown in Fig. 2(a);
M0 is the magnitude of the residual magnetization vector
M0 (A/m) which is related to the remanence Brem (T) by
M0 = Brem/µ0; and

d4 = −dup
4 /ddown

4 , (2)

dup
4 =R6

r+
9µIIrcR
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bR

9
r
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,

Rr (mm) is the rotor radius; Rb (mm) is the radius of Region
III; the dimensionless quantity, µIIrc is the relative recoil
permeability of the rare-earth material in Region II; µIIIr

is the relative permeability of the iron-core in Region III;
a, b and c can be calculated by following integral functions

a + bi=
∫ 2π

0
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4
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Pm
n (cos θ) are associated Legendre functions [15]. To sim-

plify the computation, only the fundamental terms, i.e. n = 4
and m = ±4 are considered in the derivation of the magnetic
field. These integrals are only valid within the range of

π
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For the rest non-magnetized regions in the rotor, the integral
functions are equal to zero.

III. MEASUREMENT OF THE MAGNETIC
FLUX DENSITY

In this section, a testbed is developed to measure the mag-
netic flux density precisely in a 3D space. Unlike previous
magnetic field measurement systems, this testbed can take
the three components of the flux density at any point within
the workspace, and there is no special requirement on the
flux lines such as even distribution. In addition, this testbed
can take data either at individual points or in a specified
volume automatically.

A. Prototype

Based on the working principle introduced in the preceding
section, a research prototype of the 3-DOF spherical actuator
[12] [13] has been developed with which the experimental
measurements of the flux density can be conducted. As
shown in Fig. 3, this prototype basically consists of a ball-
like rotor housed within a hollow spherical stator through
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a spherical bearing. The rotor has one layer of eight PM
poles which are evenly distributed along its equator. On the
other hand, the stator possesses twenty-four coils which are
evenly grouped into two layers and symmetrically placed
with respect to its equator.

B. Testbed of the Flux Density Measurement

1) Three-axis Hall Probe: In a mathematical sense, the flux
density is a vector in a 3D space. In order to present the
magnetic field precisely, it is necessary to measure the three
components of the flux density at any measuring point sur-
rounding the rotor. Therefore, a three-axis hall probe (Lake
Shore MMZ-2502-UH) is adopted for the measurement.
This aluminum stemmed probe does not affect the reading
accuracy when applied to a quasi-static magnetic field such
as the one created by the PM. According to the estimation,
the maximum flux density of the PM poles on the rotor
surface is about ±6kG which is completely covered by the
maximum working range of the probe, ±30kG. Furthermore,
the resolution of 0.1G and the operating temperature range
from 10◦C to 40◦C suffice the measurement requirement in
most cases.

2) Measuring Scheme: To facilitate the measurement on the
magnetic field of the rotor, the measurement coordinates φp

and θp are introduced. As illustrated in Fig. 5, the origin of
the measurement coordinate (r, θp, φp) coincides with the
rotor coordinates (r, θ, φ). The attitude angle θ starts from
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the z axis whereas the angle θp starts from the equatorial
plane; the longitude angle φ starts from the edge of one PM
pole whereas the angle φp starts from the center of the PM
pole. The relations between the two coordinate systems are
θ = θp − π/2 and φp = φ − α/2. The radial coordinates r
are identical for both measurement and rotor coordinates.

Figure 4(a) shows the complete flux density measurement
testbed. The Hall probe is mounted on a high precision three-
axis translational motion stage so that it can pinpoint to any
location near the rotor. It is also connected to the Gauss meter
to display the measured flux density in three components.
The Gauss meter is linked to a personal computer (PC)
through a data acquisition card (DAQ). The measured flux
density then can be automatically stored on the PC. The
rotor is mounted on a motorized fixture that can spin along
the rotor axis in 360◦. Thus, it is now possible to measure
the magnetic flux density in the longitudinal direction of the
rotor by simply rotating the rotor using the fixture without
re-orienting the Hall probe.

The Hall probe moves along a pre-determined path illustrated
in Fig. 4(b) and takes measurement of flux density at sample
points along the path. As the rotor structure is symmetric
about the equatorial plane, the measurement is only carried
out for the upper hemisphere. The measuring path starts from
a point along the center axis of a PM pole and very close
to the rotor surface. The measuring path is kept along a
vertical plane called a measuring plane. The probe moves
along an arc upwards on the plane while keeping at a
constant normal distance da to the rotor surface. It can be
seen from Fig. 4(b) that the neighboring sampling points
keep a constant angle of ∆θp with respect to the rotor
center. After the probe completes an arc of θp = 30◦, the
probe offsets a distance of ∆r radially and then carries out
measurement along the subsequent arc path. This measuring
process is repeated with increasing radial distance r until
the flux density is significantly small. For our measurement,
the maximum motion in r-direction is 30mm. This distance
far exceeds the possible location of the stator coil could be.
Due to the constant angle sampling pattern, the measuring
points are sparsely located when the radius r increases. It is
coincident with the fact that the gradient of the flux density
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decreases with the increase of r. Therefore, this sampling
method is more effective than sampling with equal distance
points (which requires more sampling points).

After completion of the measurement task in one measuring
plane, the PC sends commands to the controller of rotor
fixture to turn the rotor with an angle of ∆φp. The Hall
probe thus ”positioned” in a new measuring plane and the
same data acquisition procedure is repeated.

IV. DATA PROCESSING

Thus far, the magnetic flux density measurement has been
concerned. Following that, it is natural to look at the data
processing so that these data could be utilized for analysis. In
this section, nondimensionalization and normalization of the
experimental result are discussed. The primary advantage of
this data processing approach is that the resulting database
can not only be applied to the magnetic field analysis of
this particular spherical actuator but also act as a reference
for similar designs without regard to the specific PM pole
dimensions.

A. Transformation of Coordinates

As shown in Fig. 6, three components of the flux density,
BXh

, BYh
and BZh

are obtained based on the coordinates
of the hall probe, Xh, Yh and Zh. In order to coincide with
the spherical coordinates, r, θ and φ in the analytical model,
it is necessary to transform these data from the Cartesian
coordinates into the spherical coordinates. According to Fig.
6, following relation can be derived:

Br = BXh
cos θ + BZh

sin θ,

Bθ = BXh
sin θ − BZh

cos θ, (5)

Bφ = BYh
.

As mentioned before, because there is no torque generated
by Bθ and Bφ, only the Br is discussed following.

B. Nondimensionalization of the Experimental Result

Nondimensionalization technique is generally used in socio-
logical, economic or mechanical areas to evaluate the weight
of different inputs, such as the gap in the hydrodynamic
lubrication system [16]. It offers important advantages for
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the system analysis [17] [18]. (1) By using this technique,
the behavior of the system can be analyzed regardless of the
units used to measure the variables. One notable example is
the Reynolds number that is the ratio of inertial force to the
viscous force. (2) The parameters and variables are rescaled
so that all computed quantities are of relatively similar
magnitudes. Note that in some cases, certain quantities are
vastly different sizes. This helps the model analysis by
showing which variables can be thought of as ”small” or
”negligible” relative to others. (3) The nondimensionalization
approach can also simplify the equations by reducing the
number of variables. (4) In this paper, the raw data of this
experiment is nondimensionalized and normalized to form
a standard database. This database can be referred by other
similar designs. The specific process is introduced as follows.

1) Nondimensionalization of the Radius Parameters: In or-
der to facilitate the discussion following, Eqns. (1) and (2)
are reorganized as

BIr=
15µ0M0cd4,2

8π

√
35
2

ν6
1 sin4 θ

√
a2+b2cos(4φ+φ0) (6)

where

d4,2 = −dup
4,2/ddown

4,2 , (7)

dup
4,2 =1+

9µIIrc

4(µIIIr−µIIrc)ν3
2−(4µIIIr+5µIIrc)( 1

ν2
)6

,(8)

ddown
4,2 =5(µIIrc − 1) +

9µIIrc(4µIIIr + 5µIIrc)
4(µIIIr − µIIrc)ν9

2 − (4µIIIr + 5µIIrc)
, (9)

ν1 = Rr/r, ν2 = Rb/Rr, φ0 is defined by cos φ0 =
a/

√
a2 + b2 and sin φ0 = b/

√
a2 + b2. Note that both ν1

and ν2 are nondimensionalized coefficients varying between
0 and 1. Therefore, the question of computing the flux
density according to the dimensional parameters, Rb, Rr and
r becomes the question of calculating the flux density from
nondimensionalized parameters, ν1 and ν2.
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2) Normalization of the Experimental Result: Here the nor-
malization or rescaling of the experimental raw data is car-
ried out. As a matter of convenience, denote the experimental
result after the coordinate transformation in Section IV-A as
Be

Ir. The process of normalization is described as follows.

• Step One: According to Eqn. (7), the relationship between
ν2 and 1/d4,2 is illustrated in Fig. 7. It can be found out
that when 0 < ν2 < 0.5, 1/d42 does not vary much, always
being 9.2. In physics, it means that the magnetized material
at the core of the rotor does not help much to improve
the flux density of the rotor. Between 0.5 < ν2 < 0.7,
1/d4,2 increases slightly. After ν2 = 0.7, 1/d4,2 augments
drastically, which indicates that when Rb is near to Rr or
when the thickness of the PM pole is approaching a very
thin size, the flux density of the rotor drops down quickly.
According to this graph, the minimum value of 1/d4,2 can
be chosen as the scale to normalize the experimental data.
Recall the design parameter of the spherical rotor. It can
be obtained that ν2 = 20/46.5 < 0.5, which leads to the
minimum value of 1/d4,2. Therefore, the experimental result
on the current rotor could be thought of as the standard value
after the scaling of Be

Ir/
1

9.2 or 9.2Be
Ir.

• Step Two: Inspection of Eqn. (6) shows that the term
µ0M0c is related to the parameters of this particular rotor
design. Therefore, to generalize the database, the experimen-
tal result has to be normalized further by Be

Ir/µ0M0c. Note
that this step is also a nondimensionalization process because
all of the variables with units are scaled.

• Step Three: Further observation of Eqn. (6) shows that
φ0 is pertaining to the particular constants a and b which in
turn are determined by the rotor parameter α. A normalized
database should avoid this phenomena so that it is applicable
to the general rotor design. As a result, the experimental data
described in spherical coordinates is shifted an angle of φ0/4
in φ direction, denoted as Be

Ir(φ − φ0/4).

Consider the three steps above. Eventually, the data in the
standard database, BN

Ir, is obtained from Be
Ir by

BN
Ir =

9.2Be
Ir(φ − φ0/4)
µ0M0c

. (10)

Note that BN
Ir is completely nondimensionalized. It is a

function of ν1, φ and θ, all of which are dimensionless
arguments.

C. Computation of the Flux Density from the Standard
Database

Having known that the standard database has been estab-
lished, it is natural to consider how to derive the magnetic
flux density of a PM rotor that has different parameter values
from the current rotor by using this standard database.

To distinguish from the current design, a generalized rotor
is specified with parameters having primes, M ′

0, a′, b′, c′

and φ′

0, where a′ and b′ can be derived from α′ by Eqn.
(3) whereas c′ can be derived from β′ by Eqn. (4). From

the database, the magnetic flux density of this rotor can be
computed by

BIr = µ0M
′

0c
′d′4,2B

N
Ir(φ + φ′

0/4), (11)

where d′4,2 can be obtained from R′

b and R′

r by Eqn. (7).

V. VISUALIZATION AND ANALYSIS OF
THE EXPERIMENTAL RESULT

In a measurement system, after the data processing, an
effective way is supposed to be found to represent the
measured value in a form which can be easily recognized by
the observer [19]. In this article, the measured magnetic flux
density is represented visually. Based on this visualization,
analysis of the magnetic field could be carried out. As a
specific case but without loss of generality, the representation
and the analysis in this section are based on the magnetic
field of the current PM rotor design.

A. Visualization of the Magnetic Field

Visualization of the experimental results aids in understand-
ing the flux density distribution. With reference to Fig. 5, one
set of three parameters, r, θp and φp can specify one point in
the rotor coordinates. Thus the flux density at that point can
be determined. Including the flux density component BIr,
there are totally four parameters. Obviously, it is difficult to
present four parameters in a 3D space. To solve this problem,
r is given a certain fixed value. Then by varying θp and φp,
the values of the flux density can be obtained. In Cartesian
coordinates defined by θp, φp and BIr, the variation of BIr

forms a surface geometrically. Corresponding to different
values of r, one set of surfaces can be obtained to show
the flux density variation of the magnetic field visually in a
3D space.

B. Comparison with the Computational Result

With knowledge of the magnetic field model that has been
derived, it is necessary to compare the computational re-
sult with the experimental result. Some comparisons are
presented in Fig. 8. One of the meshed surface in the
figure represents the experimental result of the flux density
distribution, whereas the other stands for the computational
result from the mathematical model. Basically, the computa-
tional result matches the variation of the experimental result
well. Along the equator of the rotor, i.e. φp direction, eight
positive/negative peaks can be observed. This phenomena is
caused by the eight alternately magnetized PM poles on the
rotor equator. In contrast, the flux density declines gradually
in θp direction, which is consistent with the known fact.

However, difference can still be observed between the exper-
imental and computational results, which varies periodically.
This is caused the fact that during the computation of the
magnetic field model, only the fundamental terms of the
scalar potential in the form of spherical harmonic expansion
(SHE) are made use of.Adding more terms may reduce the
difference.
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VI. CONCLUSION

The 3D magnetic field measurement testbed developed in
this article contributes to the magnetic field study of the
3-DOF PM spherical actuators. As an improvement on its
predecessors that can only achieve 1/2D measurement, this
testbed can locate any point within the 3D workspace and
take the data of flux density in terms of vectors. Another
contribution of this paper is the nondimensionalization and
normalization of the experimental data, which broaden the
application of these data from the current rotor with particu-
lar dimensions to a parametric rotor design. In addition, after
the data processing, the experimental data are presented in
a 3D Cartesian coordinate system visually, which facilitates
the observation and analysis of the magnetic field greatly.
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